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Series Preface

Mechanical engineering, an engineering discipline forged and shaped by
the needs of the industrial revolution, is once again asked to do its substantial
share in the call for industrial renewal. The general call is urgent as we face
profound issues of productivity and competitiveness that require engineering
solutions. The Mechanical Engineering Series features graduate texts and re-
search monographs intended to address the need for information in contempo-
rary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range
of concentrations important to mechanical engineering graduate education and
research. We are fortunate to have a distinguished roster of consulting editors
on the advisory board, each an expert in one of the areas of concentration. The
names of the consulting editors are listed on the next page of this volume. The
areas of concentration are applied mechanics, biomechanics, computational me-
chanics, dynamical systems and control, energetics, mechanics of materials, pro-

cessing, production systems, thermal science, and tribology.

New York, New York Frederick F. Ling
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Introduction

Today more than ever, modeling and simulation are central to a mechanical
engineet’s activity. Increasingly complex models are being used routinely on a
daily basis. This revolution, which has just begun, is the result of the
extraordinary progress in computer technology in terms of both hardware and
software.

In order to represent a real problem, one does not use just a single model,
but a series of models. Starting from a first model, called the reference model,
practical or economic considerations, along with the wish to take advantage of
certain particular situations, often lead to the introduction of additional
simplifying hypotheses, called condensation hypotheses, which result in a new,
more manageable model. This, for example, is the case of hypotheses which,
starting from a continuous model of a medium subjected to a given
environment, lead to a “finite element” model involving parameters such as the
size and type of the elements, the number of iterations, the duration of the time

increments....



2 Mastering calculations in linear and nonlinear mechanics

Of course, it is imperative not to alter the reference model completely.
Therefore, controlling the additional simplifying hypotheses is an obvious and
major issue. This has been a constant preoccupation on the industrial level as
well as in research. The new situation is that over the last twenty years truly
quantitative tools for assessing the quality of a model compared to another
reference model have appeared.

This work deals with the control of the hypotheses leading from a
mechanical model, usually coming from continuum mechanics, to a numerical
model, i.e. the mastery of the mechanical computation process itself. Particular
attention is given to structural analysis which, in this context, is the most
advanced domain. The term “structure” designates the material envelope,
which can consist of metallic materials, composite materials, biomaterials ... in
solid, fluid or gaseous environments. The models being studied are not
necessarily linear and high degrees of nonlinearity may be present (plasticity,
viscoplasticity, unilateral contact...). The objective of structural analysis is to
simulate the behavior of a structure subject to various solicitations (prescribed
displacements and forces) numerically; in particular, the aim is to evaluate the
state of damage of the structure and compare it with one or several limit states.
The final stage consists in optimizing the structural parameters. The practical
problems concern the dimensioning, optimization, reliability and even the
manufacturing process of the object being designed or built.

The basic problem consists in defining and evaluating a measure of the
error due to the discretization performed, in this case, by the finite element
method.

Two situations must be dealt with, depending on whether the error is
evaluated before or after the finite element calculation has been performed.

Today, for the first situation corresponding to what one calls “a priori”
errors, only coarse evaluations are available. The second situation is more
favorable: the finite element solution constitutes an additional piece of
information. It is in the corresponding field of “a posteriori” error evaluation
that the first research works on linear problems were published about twenty

years ago.



