Intelligent Systems, Control and Automation: Science and Engineering

#### **Thomas Kletschkowski**

## Adaptive Feed-Forward Control of Low Frequency Interior Noise



Adaptive Feed-Forward Control of Low Frequency Interior Noise

## International Series on INTELLIGENT SYSTEMS, CONTROL, AND AUTOMATION: SCIENCE AND ENGINEERING

## VOLUME 56

#### Editor:

Professor S.G. Tzafestas, National Technical University of Athens, Athens, Greece

### Editorial Advisory Board

Professor P. Antsaklis, University of Notre Dame, Notre Dame, IN, USA
Professor P. Borne, Ecole Centrale de Lille, Lille, France
Professor D.G. Caldwell, University of Salford, Salford, UK
Professor C.S. Chen, University of Akron, Akron, Ohio, USA
Professor T. Fukuda, Nagoya University, Nagoya, Japan
Professor S. Monaco, University La Sapienza, Rome, Italy
Professor G. Schmidt, Technical University of Munich, Munich, Germany
Professor S.G. Tzafestas, National Technical University of Athens, Athens, Greece
Professor N.K. Sinha, McMaster University, Hamilton, Ontario, Canada
Professor D. Tabak, George Mason University, Fairfax, Virginia, USA
Professor K. Valavanis, University of Denver, Denver, Colorado, USA

Thomas Kletschkowski

# Adaptive Feed-Forward Control of Low Frequency Interior Noise



Thomas Kletschkowski Department of Mechanical Engineering, Mechatronics Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Holstenhofweg 85 Hamburg 22043 Germany kletsch@hsu-hh.de

ISBN 978-94-007-2536-2 e-ISBN 978-9 DOI 10.1007/978-94-007-2537-9 Springer Dordrecht Heidelberg London New York

e-ISBN 978-94-007-2537-9

Library of Congress Control Number: 2011941767

© Springer Science+Business Media B.V. 2012

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

## Preface

This book focuses on a mechatronic approach to active control of interior noise. It strives to comprehend the results of a five year research period as chief engineer with the chair for mechatronics of the Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg.

Although the book starts with fundamental concepts, the reader is expected to be familiar with engineering mechanics and/or engineering acoustics (including experimental techniques), system theory and numerical mathematics. The target audience therefore consists of post graduate students, professional engineers, and researchers working in mechatronics, and especially in the field of active interior noise control.

At the beginning of each new chapter, an abstract contains both a short summary and, as recommendations for further reading, a brief comment on literature. The important contributions to the subject matter are quoted throughout the text. However, the list of references is far from being complete. I therefore apologize to any colleagues not mentioned in spite of their important contributions to academic and/or applied research on active noise and vibration control.

Hamburg, Germany

Thomas Kletschkowski

## Acknowledgements

The author gratefully acknowledges the support of the Helmut-Schmidt-University/ University of the Federal Armed Forces Hamburg. The top-level conditions for research and teaching provided by this institution have been essential to finish my Habilitation as well as to write this book.

Very special thanks, the author would like to express to Delf Sachau who made me familiar with Active Noise and Vibration Control in 2004 and since then has continued to give much helpful advice. The author would also like to thank Udo Zölzer and Detlef Krahè for all of their criticisms, comments and suggestions. Furthermore, the author would like to thank Uwe Schomburg and Albrecht Bertram who always encouraged me to finish this work.

Many colleagues and friends also made useful comments and suggestions that made is possible to improve this book. The author would like to thank Sten Böhme, Harald Breitbach, Mohamed Bouhaj, Christian Gerner, Julian Greßkowski, Martin Holters, Norbert Hövelmann, Kay Kochan, Rolf Lammering, Jörg Lefèvre, Marian Markiewicz, Günter Neuwirth, Oliver Pabst, Marek Pawelczyk, Bernd Samtleben, Henning Scheel, Kai Simanowski, Jochen Sommer, Fabrice Teuma, Martin Wandel and Matthias Weber.

The academic career of the author would have been impossible without the support of his family in Hamburg, Schwerin and Den Haag. Very special thanks go to Ammerentie, Roland and Karoline, to Beate and Reinhard as well as to Adriana and Izaak. The author is grateful to all of them.

## Notation

Mathematical Operations and Operators div Divergence operator Gradient operator grad max Maximum operator min Minimum operator EExpectation F Fourier transform  $\tilde{s}^{-1}$ Inverse Fourier transform  $rac{\mathfrak{F}_d}{\mathfrak{F}_d^{-1}}$ Fourier transform of sampled signals Inverse Fourier transform of sampled signals  $\tilde{\mathfrak{F}}_{DFT}^{-1}$  $\mathfrak{F}_{DFT}^{-1}$ Discrete Fourier transform Inverse Discrete Fourier transform Gives the imaginary part of a complex number Im Gives the real part of a complex number Re T Transformation Mapping from time domain to frequency domain ⊶ •-• Mapping from frequency domain to time domain Wave operator Ā Vector wave operator  $()^T$ Transposition ()<sup>*H*</sup> Hermitian or conjugate transpose (of a matrix) d()Total derivative  $\partial()$ Partial derivative  $\overline{()}$ Arithmetic mean tr() Trace of a matrix  $\| \|_2$ Euclidean norm

#### Conventions for Signals and Systems

Conventions for Continuous-Time Signals and Systems

| t | Time     |
|---|----------|
| C | <b>F</b> |

| f Frequen  | Cy  |
|------------|-----|
| <i>j</i> 1 | . ) |

| ω                     | Angular frequency, i.e. $2\pi$ times the actual frequency in hertz |  |
|-----------------------|--------------------------------------------------------------------|--|
| x(t)                  | Continuous-time signal                                             |  |
| $X(j\omega)$          | Fourier transform of $x(t)$                                        |  |
| Convention            | ns for Discrete-Time Signals and Systems                           |  |
| n                     | Discrete time step                                                 |  |
| Т                     | Sampling time, so $t = nT$ where <i>n</i> is an integer            |  |
| x(n)                  | Discrete-time signal                                               |  |
| $X(e^{j\omega T})$    | Fourier transform of $x(n)$                                        |  |
| X(n)                  | Fourier transform of $x(n)$ at discrete time step $n$              |  |
| General Conventions   |                                                                    |  |
| â                     | Real valued amplitude of x or approximation/model of x             |  |
| x'                    | Filtered signal                                                    |  |
| $x_{\infty}$          | Steady state of x                                                  |  |
| $\overline{x}$        | Arithmetic mean of <i>x</i>                                        |  |
| $\sigma_x^2$          | Variance of <i>x</i>                                               |  |
| X <sub>RMS</sub>      | Root mean square of <i>x</i>                                       |  |
| $\delta x$            | Virtual signal                                                     |  |
| $\delta x \\ \hat{X}$ | Complex amplitude of X or approximation/model of X                 |  |
| X'                    | Filtered signal                                                    |  |
| $X_{\infty}$          | Steady state of X                                                  |  |
| $E_x$                 | Mean signal energy                                                 |  |
| $\Pi_{x}$             | Mean signal power                                                  |  |
| $r_{\chi\chi}$        | Auto correlation of <i>x</i>                                       |  |
| $r_{xy}$              | Cross correlation between <i>x</i> and <i>y</i>                    |  |
| h                     | Impulse response of a system                                       |  |
| $S_{xx}$              | Auto spectral density of x                                         |  |
| $S_{xy}$              | Cross spectral density for $x$ and $y$                             |  |
| $G_{xx}$              | Single-sided auto spectral density of x                            |  |
| $G_{xy}$              | Single-sided cross spectral density for $x$ and $y$                |  |
| H                     | Transfer function of a system                                      |  |
| <i>c</i>              |                                                                    |  |

## Conventions for Linear Algebra

Conventions for Scalars

| x, X      | Scalar variables                                   |
|-----------|----------------------------------------------------|
| $X_R$     | Real part of X, where $X_R = \operatorname{Re}(X)$ |
| $X_I$     | Imaginary part of X, where $X_I = \text{Im}(X)$    |
| $X^*$     | Conjugate complex of X, where $X^* = X_R - jX_I$   |
| $ X ^{2}$ | Squared magnitude of X, where $ X ^2 = X^*X$       |
|           |                                                    |

Conventions for Column Matrices

| <b>x</b> Lower-case bold variables are column matrices | 5 |
|--------------------------------------------------------|---|
|--------------------------------------------------------|---|

- $\mathbf{x}^T$ The transpose of a column matrix is a row matrix
- Real part of **x**, where  $\mathbf{x}_R = \operatorname{Re}(\mathbf{x})$  $\mathbf{X}_R$
- Imaginary part of **x**, where  $\mathbf{x}_I = \text{Im}(\mathbf{x})$ Hermitian of **x**, where  $\mathbf{x}^H = \mathbf{x}_R^T j\mathbf{x}_I^T$  $\mathbf{x}_I$
- $\mathbf{x}^{H}$

| $\mathbf{x}^H \mathbf{x}$ | The inner product of <b>x</b> , which is a scalar                                      |
|---------------------------|----------------------------------------------------------------------------------------|
| $\mathbf{x}\mathbf{x}^H$  | The outer product of $\mathbf{x}$ , whose trace is equal to the inner product          |
| $\ {\bf x}\ _2$           | Euclidean norm of <b>x</b> , where $\ \mathbf{x}\ _2 = \sqrt{\mathbf{x}^H \mathbf{x}}$ |

### Conventions for Matrices

| convention              | is jor maintees                                                                                           |
|-------------------------|-----------------------------------------------------------------------------------------------------------|
| Х                       | Upper-case bold variables are matrices                                                                    |
| $\mathbf{X}^T$          | The transpose of <b>X</b>                                                                                 |
| $\mathbf{X}_R$          | Real part of <b>X</b> , where $\mathbf{X}_R = \operatorname{Re}(\mathbf{X})$                              |
| $\mathbf{X}_{I}$        | Imaginary part of <b>X</b> , where $\mathbf{X}_I = \text{Im}(\mathbf{X})$                                 |
| $\mathbf{X}^{H}$        | Hermitian of <b>X</b> , where $\mathbf{X}^{H} = \mathbf{X}_{R}^{T} - j\mathbf{X}_{I}^{T}$                 |
| $\mathbf{X}^{-1}$       | The inverse of <b>X</b>                                                                                   |
| $\mathbf{X}^{-H}$       | The inverse of $\mathbf{X}^H$                                                                             |
| $tr(\mathbf{X})$        | Trace of <b>X</b>                                                                                         |
| $\lambda_i(\mathbf{X})$ | The <i>i</i> -th eigenvalue of <b>X</b>                                                                   |
| $\ {\bf X}\ _2$         | Euclidean norm of <b>X</b> , where $\ \mathbf{X}\ _2 = \sqrt{\operatorname{tr}(\mathbf{X}^H \mathbf{X})}$ |
| Ι                       | The identity matrix                                                                                       |
|                         |                                                                                                           |

## Conventions for Vectors

| $\vec{x}$               | Vector valued variable such as position vector |
|-------------------------|------------------------------------------------|
| $\vec{x} \cdot \vec{y}$ | Scalar product between vectors                 |

## Comments on Symbols

## Lower-Case Latin Symbols

| Lower-Cas       | se Latin Symbols                                                        |
|-----------------|-------------------------------------------------------------------------|
| b               | Cost function parameter column matrix                                   |
| с               | Speed of sound or cost function parameter                               |
| d               | Disturbance or distance between anode and cathode                       |
| е               | 2.718, error signal, acoustic energy density or additive filtered error |
| $e_{kin}$       | Acoustic kinetic energy density                                         |
| $e_{pot}$       | Acoustic potential energy density                                       |
| $\hat{f}$       | Frequency                                                               |
| $f_{x(t)}(\xi)$ | Probability density function of a stochastic process                    |
| $f_n$           | <i>n</i> -th eigenfrequency                                             |
| $f_{nR}$        | <i>n</i> -th resonance frequency                                        |
| f               | Load column matrix                                                      |
| $\frac{i}{i}$   | Index, normal component of sound intensity or electric current          |
| ī               | Sound intensity vector                                                  |
| j               | Index or imaginary number $(j = \sqrt{-1})$                             |
| k               | Index, wave number, discrete-time delay or stiffness                    |
| k'              | Alternative form of complex wave number                                 |
| $k_{nR}$        | Wave number for the <i>n</i> -th resonance                              |
| l               | Index or length                                                         |
| m               | Index, discrete-time delay or mass                                      |
| n               | Index or discrete time step                                             |
| $\vec{n}$       | Normal vector                                                           |
| р               | Acoustic pressure                                                       |
| $p_{tot}$       | Total pressure                                                          |
|                 |                                                                         |

| $p_{\infty}$    | Equilibrium value of total pressure                 |
|-----------------|-----------------------------------------------------|
| $p_p$           | Primary noise                                       |
| $p_s$           | Anti-noise                                          |
| q               | Source strength, electric charge or volume velocity |
| r               | Damping coefficient or radial distance              |
| r               | Residuum column matrix                              |
| $\Delta r$      | Change in radial distance                           |
| t               | Time                                                |
| t <sub>i</sub>  | Observation time point                              |
| v               | Normal component of acoustic velocity               |
| $ec{v}$         | Acoustic velocity                                   |
| $\vec{v}_{tot}$ | Total value of acoustic velocity                    |
| $ec{v}_\infty$  | Equilibrium value of acoustic velocity              |
| W               | Column matrix of control filter coefficients        |
| $w_{mki}$       | <i>mki</i> -th control filter coefficient           |
| $\hat{w}_{mki}$ | <i>mki</i> -th auxiliary coefficient                |
| x               | Signal or <i>x</i> -coordinate                      |
| $\Delta x$      | Separation distance                                 |
| $\vec{x}$       | Position vector                                     |
| у               | Signal or y-coordinate                              |
| z               | z-coordinate                                        |
|                 |                                                     |

Upper-Case Latin Symbols

| opper eu                                 | se Latin Symbols                                                       |
|------------------------------------------|------------------------------------------------------------------------|
| Α                                        | Attenuation of analogue filter                                         |
| Α                                        | Cost function parameter matrix                                         |
| В                                        | Electromagnetic induction                                              |
| С                                        | Capacity of condenser                                                  |
| С                                        | Stiffness matrix or controller matrix                                  |
| $C_p$                                    | Specific heat for constant pressure                                    |
| $C_p \\ C_V$                             | Specific heat for constant volume                                      |
| D                                        | Dimensionless damping ratio of mechanical systems                      |
| D                                        | Damping matrix                                                         |
| Ε                                        | Error, Energy or Bulk modulus                                          |
| Ι                                        | Number of control filter coefficients or instantaneous intensity       |
| Ī                                        | Mean intensity                                                         |
| $I \\ \bar{I} \\ \bar{I}_M \\ \bar{I}_T$ | Measured mean intensity                                                |
| $\bar{I}_T$                              | True mean intensity                                                    |
| J                                        | Number of filter coefficients used for plant modeling or cost function |
| Κ                                        | Number of reference signals                                            |
| L                                        | Number of error signals, length or inductance                          |
| М                                        | Number of controller output signals or modal overlap                   |
| Μ                                        | Mass matrix                                                            |
| N                                        | Number of time steps                                                   |
| $P_w$                                    | Probability of a stochastic process                                    |
| R                                        | Complex reflection coefficient, electric resistance or residuum        |
| $R_Z$                                    | Impedance boundary                                                     |
|                                          |                                                                        |

| $R_P$                 | Pressure boundary                                                     |
|-----------------------|-----------------------------------------------------------------------|
| $R_v$                 | Velocity boundary                                                     |
| S                     | Surface area or cross section                                         |
| Т                     | Sample time or periodic time or time interval                         |
| $T_{XY}$              | Transmissibility between X and Y                                      |
| $T_{60}$              | Reverberation time                                                    |
| U                     | Electric voltage                                                      |
| V                     | Volume                                                                |
| $\Delta V$            | Change in volume                                                      |
| $\mathbf{W}_p$        | Matrix used to weight the squared sound pressure                      |
| $\mathbf{W}_{q}$      | Matrix used to weight the control signal                              |
| Z                     | Acoustic impedance                                                    |
| Lower-Cas             | se Greek Symbols                                                      |
| α                     | Absorption coefficient                                                |
| $\alpha_{nR}$         | Absorption coefficient for the <i>n</i> -th resonance                 |
| β                     | Weighting factor                                                      |
| χ                     | Phase angle of complex reflection coefficient                         |
| $\delta(t)$           | Dirac impulse                                                         |
| $\varepsilon_{vol}$   | Volume compression                                                    |
| ε                     | Filtered error signal for FEFxLMS algorithm                           |
| γ                     | Coherence                                                             |
| κ                     | Sensitivity, e.g. of microphone                                       |
| λ                     | Wave length                                                           |
| $\lambda_i$           | <i>i</i> -th eigenvalue                                               |
| $_{	ilde{ u}}$        | Step size                                                             |
| $	ilde{\mu}$          | Power normalized step size                                            |
| ω                     | Angular frequency                                                     |
| $\omega_n$            | Angular frequency corresponding to <i>n</i> -th eigenfrequency        |
| $\omega_{nR}$         | Angular frequency corresponding to <i>n</i> -th resonance frequency   |
| $\omega_M$            | Modal bandwidth                                                       |
| arphi                 | Phase angle                                                           |
| $\varphi_0$           | Zero phase angle                                                      |
| $\Delta \varphi_H$    | Phase angle between transducers                                       |
| $\Delta \varphi_p$    | Phase angle between two sound pressures                               |
| $\phi$ $\pi$          | Velocity potential 3.1415                                             |
| $\pi$                 | Change in density                                                     |
| ρ                     | Total value of density                                                |
| $\rho_{tot}$          | Equilibrium value of density                                          |
| $ ho_\infty \ \sigma$ | Decay coefficient                                                     |
| τ                     | Continuous-time delay                                                 |
| θ                     | Change in temperature                                                 |
| $\theta_{tot}$        | Total value of temperature                                            |
| $\theta_{\infty}$     | Equilibrium value of temperature                                      |
| υ <sub>∞</sub><br>ξ   | Stochastic process or dimensionless damping ratio in acoustic systems |
| 7                     | steenaste process of annensionless dumping futio in doustic systems   |

| ξnR<br>ζ          | Damping ratio for the <i>n</i> -th resonance<br>Dimensionless frequency $(\zeta = L/\lambda)$ |
|-------------------|-----------------------------------------------------------------------------------------------|
| 2                 |                                                                                               |
|                   | e Greek Symbols                                                                               |
| $\Pi$<br>$\Sigma$ | Sound power                                                                                   |
| 2                 | Uncertainty                                                                                   |
| Acronyms          |                                                                                               |
| ABN               | Airborne noise                                                                                |
| ANC               | Active noise control                                                                          |
| ANS               | Active noise system                                                                           |
| ACM               | Auto correlation matrix                                                                       |
| ASAC              | Active structural acoustic control                                                            |
| AVC               | Active vibration control                                                                      |
| ACF               | Auto correlation function                                                                     |
| ASD               | Auto spectral density                                                                         |
| BC                | Boundary condition                                                                            |
| BPF               | Blade passage frequency                                                                       |
| CA                | Coherence analysis                                                                            |
| CCF               | Cross correlation function                                                                    |
| CCM               | Cross correlation matrix                                                                      |
| CGLS              | Conjugated gradient least square                                                              |
| COA               | Correlation analysis                                                                          |
| CSD               | Cross spectral density                                                                        |
| DSP               | Digital signal processor                                                                      |
| DC                | Direct current                                                                                |
| EBN               | External borne noise                                                                          |
| EOC               | Engine order cancellation                                                                     |
| FEM               | Finite element method                                                                         |
| FeLMS             | Filtered error least mean square                                                              |
| FFT               | Fast Fourier transform                                                                        |
| FIR               | Finite impulse response                                                                       |
| FRF               | Frequency response function                                                                   |
| FEFxLMS           | Fast exact filtered reference least mean square                                               |
| FxLMS             | Filtered reference least mean square                                                          |
| KHIE              | Kirchhoff-Helmholtz integral equation                                                         |
| IBEM              | Inverse boundary element method                                                               |
| IBN               | Internal borne noise                                                                          |
| IFEM              | Inverse finite element method                                                                 |
| IMC               | Internal model control                                                                        |
| IMSC              | Independent modal space control                                                               |
| IPE               | Initial performance estimation                                                                |
| IRA               | Impulse response analysis                                                                     |
| MA                | Military aircraft                                                                             |
| MFxLMS            | Modified filtered reference least mean square                                                 |
| LMS               | Least mean square                                                                             |
|                   |                                                                                               |

| LTI  | Linear time invariant                        |
|------|----------------------------------------------|
| MA   | Military aircraft                            |
| NCP  | Normalized cumulative periodogram            |
| NR   | Noise reduction                              |
| ODE  | Ordinary differential equation               |
| PA   | Public address                               |
| PDE  | Partial differential equation                |
| PVP  | Principle of virtual pressure                |
| RMS  | Root mean square                             |
| RSC  | Remote sensor control                        |
| SBN  | Structure borne noise                        |
| SPL  | Sound pressure level                         |
| SIAF | Sound intensity probe with active free field |
| SVD  | Singular value decomposition                 |
| THF  | Technologiezentrum Hamburg Finkenwerder      |
| TPA  | Transducer placement analysis                |
| TR   | Tikonov regularization                       |
| TVA  | Tunable vibration absorber                   |
| VLJ  | Very light jet                               |
| VVS  | Volume velocity source                       |
| WA   | Working area                                 |
|      |                                              |

## Contents

## Part I Introduction

| 1   | Intr | oduction to Interior Active Noise Control                     | 3  |
|-----|------|---------------------------------------------------------------|----|
|     | 1.1  | Idea, Limit and Structure of Active Control Concepts          | 3  |
|     | 1.2  | Remarks on Interior Noise and Active Control Approaches       | 5  |
|     |      | 1.2.1 Comments on the Interior Noise Problem                  | 5  |
|     |      | 1.2.2 Comments on Active Control Approaches                   | 6  |
|     |      | 1.2.3 A Qualitative Comparison of Active Control Approaches . | 7  |
|     | 1.3  | Examples for Engineering Applications of Interior ANC         | 15 |
|     | 1.4  | Objective of Book                                             | 17 |
| Par | t II | The Mechatronic Background of Feed-Forward Active Noise       |    |
|     | Con  | trol                                                          |    |
| 2   | Con  | nments on Signals and Systems                                 | 25 |
|     | 2.1  | Comments on Signals                                           | 25 |
|     |      | 2.1.1 Classification                                          | 26 |
|     |      | 2.1.2 Characteristic Values and Functions                     | 27 |
|     | 2.2  | Comments on Systems                                           | 32 |
|     |      | 2.2.1 Definitions                                             | 32 |
|     |      | 2.2.2 Transfer Behavior of LTI-Systems                        | 32 |
| 3   | Dyn  | amics of Basic System                                         | 35 |
|     | 3.1  | Basic Field Variables                                         | 35 |
|     | 3.2  | Acoustic Field Equations                                      | 36 |
|     | 3.3  | Energy Density and Sound Intensity                            | 39 |
|     | 3.4  | One-Dimensional Enclosed Sound Fields                         |    |
|     |      | 3.4.1 Free Vibrations in One-Dimensional Sound Fields         | 41 |
|     |      | 3.4.2 Forced Vibrations in One-Dimensional Sound Fields       | 43 |
| 4   | Sen  | sors for Active Noise Control                                 | 49 |
|     | 4.1  | Acoustical Sensing by Condenser Type Microphones              | 50 |