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Preface

The key point of Harnack’s inequality is to compare values at two different points for
positive solutions of a partial differential equation. This inequality was introduced
by Harnack [21] in 1887 for harmonic functions on a Euclidean space, and was gen-
eralized by Serrin [46] in 1955 and Moser [34] in 1961 to solutions of elliptic or
parabolic partial differential equations. Among many other applications, Harnack’s
inequality was used by Li and Yau [26] in 1986 to derive explicit heat kernel es-
timates, and by Hamilton [20] in 1993 to investigate the regularity of Ricci flows,
which was then used in Perelman’s proof of the Poincaré conjecture. All these Har-
nack inequalities are, however, dimension-dependent and thus invalid for equations
on infinite-dimensional spaces.

In this book we aim to present a self-contained account of Harnack inequali-
ties and applications for the semigroup of solutions to stochastic functional/partial
differential equations. Since the associated Fokker–Planck equations are partial dif-
ferential equations on infinite-dimensional spaces, the Harnack inequalities we are
going to investigate are dimension-free. This is essentially different from the above-
mentioned classical Harnack inequalities. Moreover, the main tool in our study is
a new coupling method (i.e., coupling by change of measure) rather than the usual
maximum principle in the literature of partial differential equations and geometric
analysis.

The book consists of four chapters. In Chap. 1, we introduce a general theory
concerning dimension-free Harnack inequalities, which includes the main idea of
establishing Harnack inequalities and derivative formulas using coupling by change
of measure, derivative formulas using the Malliavin calculus, links of Harnack in-
equalities to gradient estimates, and various applications of Harnack inequalities.
In Chap. 2, we establish the Harnack inequality with power and the log-Harnack in-
equality for the semigroup associated to a class of nonlinear stochastic partial differ-
ential equations, which include stochastic generalized porous media/fast-diffusion
equations as typical examples. The main tool is the coupling by change of measure
introduced in Chap. 1. In Chap. 3, we investigate gradient estimates and Harnack
inequalities for semilinear stochastic partial differential equations using coupling
by change of measure, gradient estimates, and finite-dimensional approximations.
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viii Preface

Chapter 4 is devoted to gradient estimates and Harnack inequalities for the segment
solution of stochastic functional differential equations, using coupling by change
of measure and the Malliavin calculus. To save space, applications of Harnack and
shift Harnack inequalities presented in Chap. 1 are not restated in the other three
chapters for specific models.

In this book we consider only stochastic functional/partial differential equations
driven by Brownian motions. But the general theory introduced in Chap. 1 works
also for stochastic differential equations driven by Lévy noises or the fractional
Brownian motions; see [16, 17, 62, 63, 67, 76] and references therein. Materials of
the book are mainly organized from the author’s recent publications, including joint
papers with colleagues who are gratefully acknowledged for fruitful collaborations.
In particular, I would like to mention the joint work [3] with Marc Arnaudon and
Anton Thalmaier, where the coupling by change of measure was used for the first
time to establish the dimension-free Harnack inequality.

I would like to thank Xiliang Fan and Shaoqin Zhang for reading earlier drafts
of the book and making corrections. I would also like to thank my colleagues from
the probability groups of Beijing Normal University and Swansea University, in
particular Mu-Fa Chen, Wenming Hong, Niels Jacob, Zenghu Li, Eugene Lytvynov,
Yonghua Mao, Aubrey Truman, Jiang-Lun Wu, Chenggui Yuan, and Yuhui Zhang.
Their kind help and constant encouragement provided me with an excellent working
environment.

Finally, financial support from the National Natural Science Foundation of
China, Specialized Research Foundation for Doctoral Programs, the Fundamental
Research Funds for the Central Universities, and the Laboratory of Mathematics
and Complex Systems are gratefully acknowledged.

Beijing, China Feng-Yu Wang



Contents

1 A General Theory of Dimension-Free Harnack Inequalities . . . . . . . . . 1
1.1 Coupling by Change of Measure and Applications . . . . . . . . . . . . . . . 1

1.1.1 Harnack Inequalities and Bismut Derivative Formulas . . . . . 2
1.1.2 Shift Harnack Inequalities and Integration by Parts

Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Derivative Formulas Using the Malliavin Calculus . . . . . . . . . . . . . . . 8

1.2.1 Bismut Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Integration by Parts Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Harnack Inequalities and Gradient Inequalities . . . . . . . . . . . . . . . . . . 12
1.3.1 Gradient–Entropy and Harnack Inequalities . . . . . . . . . . . . . . 12
1.3.2 From Gradient–Gradient to Harnack Inequalities . . . . . . . . . . 16
1.3.3 L2 Gradient and Harnack Inequalities . . . . . . . . . . . . . . . . . . . 17

1.4 Applications of Harnack and Shift Harnack Inequalities . . . . . . . . . . 20
1.4.1 Applications of the Harnack Inequality . . . . . . . . . . . . . . . . . . 20
1.4.2 Applications of the Shift Harnack Inequality . . . . . . . . . . . . . 25

2 Nonlinear Monotone Stochastic Partial Differential Equations . . . . . . 27
2.1 Solutions of Monotone Stochastic Equations . . . . . . . . . . . . . . . . . . . . 27
2.2 Harnack Inequalities for α ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Harnack Inequalities for α ∈ (0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Applications to Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Stochastic Generalized Porous Media Equations . . . . . . . . . . 46
2.4.2 Stochastic p-Laplacian Equations . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 Stochastic Generalized Fast-Diffusion Equations . . . . . . . . . . 48

3 Semilinear Stochastic Partial Differential Equations . . . . . . . . . . . . . . . 51
3.1 Mild Solutions and Finite-Dimensional Approximations . . . . . . . . . . 51
3.2 Additive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Harnack Inequalities and Bismut Formula . . . . . . . . . . . . . . . . 57
3.2.2 Shift Harnack Inequalities and Integration by Parts

Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



x Contents

3.3 Multiplicative Noise: The Log-Harnack Inequality . . . . . . . . . . . . . . . 64
3.3.1 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Application to White-Noise-Driven SPDEs . . . . . . . . . . . . . . 66

3.4 Multiplicative Noise: Harnack Inequality with Power . . . . . . . . . . . . . 69
3.4.1 Construction of the Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Multiplicative Noise: Bismut Formula . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Stochastic Functional (Partial) Differential Equations . . . . . . . . . . . . . . 79
4.1 Solutions and Finite-Dimensional Approximations . . . . . . . . . . . . . . . 79

4.1.1 Stochastic Functional Differential Equations . . . . . . . . . . . . . 79
4.1.2 Semilinear Stochastic Functional Partial

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Elliptic Stochastic Functional Partial Differential

Equations with Additive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Harnack Inequalities and Bismut Formula . . . . . . . . . . . . . . . . 85
4.2.2 Shift Harnack Inequalities and Integration by Parts

Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.3 Extensions to Semilinear SDPDEs . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Elliptic Stochastic Functional Partial Differential
Equations with Multiplicative Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.1 Log-Harnack Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Harnack Inequality with Power . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.3 Bismut Formulas for Semilinear SDPDEs . . . . . . . . . . . . . . . . 103

4.4 Stochastic Functional Hamiltonian System . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 Main Result and Consequences . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.3 Proofs of Corollary 4.4.3 and Theorem 4.4.5 . . . . . . . . . . . . . 115

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



Chapter 1
A General Theory of Dimension-Free Harnack
Inequalities

1.1 Coupling by Change of Measure and Applications

The dimension-free Harnack inequality was first established in [50] for the heat
semigroup on Riemannian manifolds with curvature bounded below. To derive the
same type inequality on manifolds with unbounded below curvature, the coupling
by change of measure was introduced in [3]. Then it was applied to the study of
Harnack-type inequalities and derivative formulas for solutions of various stochastic
equations; see, e.g., [4, 5, 10, 15, 19, 27, 31, 43, 53, 54, 57, 58, 61, 64, 65, 66, 68, 74].
In this section we explain the main idea for the study of Harnack inequalities and
derivative formulas in an abstract framework.

Definition 1.1. Let μ and ν be two probability measures on a measurable space
(E,B), and let X ,Y be two E-valued random variables on a complete probability
space (Ω ,F ,P).

(i) If the distribution of X is μ , while under another probability measure Q on
(Ω ,F ) the distribution of Y is ν , we call (X ,Y ) a coupling by change of mea-
sure for μ and ν with changed probability Q.

(ii) If μ and ν are distributions of two stochastic processes with path space E, a
coupling by change of measure (X ,Y ) for μ and ν is called a coupling by change
of measure for these two processes. In this case, X and Y are called the marginal
processes of the coupling (X ,Y ).

Let B(E), Bb(E), and B+
b (E) denote the sets of all measurable, bounded

measurable, and nonnegative bounded measurable functions on E. When E is a
topological space, we take B to be the Borel σ -field, and denote by C(E),Cb(E),
and C+

b (E) the set of all continuous, bounded continuous, and nonnegative bounded
continuous functions on E.

For a family of probability measures {μx : x ∈ E}, we define

P f (x) =
∫

E
f (y)μx(dy) =: μx( f ), f ∈ Bb(E),x ∈ E. (1.1)
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