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Preface

Since their introduction in the pioneering work by Schoenberg [75], splines have
become one of the powerful tools in Mathematics [2, 47, 76, 77, 95] and in com-
puter-aided geometric design [22, 27, 46, 48, 57, 103]. In recent decades, splines
have served as a source for wavelet [1, 3, 4, 12, 14, 17, 29, 39, 40, 58, 71, 80, 88, 91,
92, 96, 100, 101, 102], multiwavelet [13, 43], and frame constructions [16, 19, 21,
37, 38, 44, 67, 72]. Splines and spline-based wavelets, wavelet packets and frames
have been extensively used in signal and image processing applications [5, 6, 11,
15, 18, 23, 24, 26, 31, 32, 51, 53, 54, 65, 81, 85, 87, 89, 90], to name a few.

An excellent survey for state-of-the-art (as of year 1999) on spline theory and
applications is given in [86]. This survey motivated us in writing the present
textbook. Another motivation was the emergence in recent years of new contri-
butions of splines to wavelet analysis and applications. In addition, we believe that
the socalled discrete splines and their applications deserve a systematic exposure.

Discrete splines [30, 52, 60, 61, 62, 63, 68, 77, 93], whose properties mimic the
properties of polynomial splines, are the discrete-time counterparts of polynomial
splines. They provide natural tools for handling discrete-time signal processing
problems and serve as a source for the design of wavelet transforms [9, 10, 55, 69]
and frames transforms [16, 20, 105], whose properties perfectly fit signal/image
processing applications.

The goal of this book is to provide a universal toolbox accompanied by a
MATLAB software for manipulating polynomial and discrete splines, spline-based
wavelets, wavelet packets, and wavelet frames in signal/image processing
applications. For this, known and new contributions of splines to signal and image
processing are described from a unified perspective, which is based on the
so-called Zak transform (ZT) [28, 94]. Being applied to B-splines, the ZT
produces sets of so-called exponential splines (in Schoenberg [76] sense), which
are similar to Fourier exponentials. This approach provides explicit constructions
of different types of splines such as interpolating, quasi-interpolating and
smoothing splines, best approximation splines and orthonormal bases for spline
spaces. Constructions and utilization of various spline wavelets and spline wavelet
packets have become straightforward. The ZT of discrete B-splines produces
exponential discrete splines.

Coupled with the Lifting scheme [82] of a wavelet transform, the ZT approach
utilizes polynomial and discrete splines for the design of versatile library of
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biorthogonal wavelets, multiwavelets, and wavelet frames (framelets) [9, 10, 12,
13, 14, 16, 17, 19, 20, 21, 105]. Properties of the designed wavelets and framelets,
such as symmetry, flat spectra, vanishing moments, and good localization in either
time or frequency domains, are valuable for signal/image processing applications.
For example, the so-called Butterworth biorthogonal wavelets and wavelet frames,
which originate from discrete splines, have proved to be especially efficient in
signal/image processing applications. Digital filters, which have been produced
during wavelets design process, give birth to subdivision schemes for fast explicit
computation of splines values at dyadic and triadic rational points [22, 103, 104],
which is needed for interpolation, resampling, and geometric transformations of
images.

Periodic exponential splines form orthogonal bases of periodic splines spaces,
which are very similar to periodic Fourier exponentials. Representation of periodic
splines via orthonormal bases produces the so-called Spline Harmonic Analysis
(SHA) [99, 101], which combines approximation abilities of splines with the
computational strength of the Fast Fourier transform (FFT). It introduces the
harmonic analysis methodology into periodic spline spaces.

SHA enables us to efficiently construct and manipulate different types of
splines, wavelets, wavelet packets, and wavelet frames. SHA has paved the way
for periodic splines to contribute to solutions of signal/image processing appli-
cations [12, 18, 23, 24, 26, 101, 105].

The textbook is divided into two volumes. In Volume I, periodic splines and
their diverse signal processing applications are discussed. Volume II deals with
nonperiodic splines.

The following topics are explored in Volume I of the book:
Zak transform (ZT): ZT of periodic functions is introduced and its properties

are outlined. In particular, they include periodic counterparts of the Poisson
summation formulas (for example, [70, 79]). Realizations of the ZT in polynomial
and discrete periodic spline spaces result in the SHA, which is presented in detail.

Elements of spline theory and design: Different types of periodic polynomial
and discrete splines with equidistant nodes are presented and their properties are
outlined. The design of interpolating, smoothing, shift-orthogonal splines becomes
straightforward due to the SHA methodology. Constructions of these splines types
utilize filters with infinite impulse response (IIR). However, due to the FFT uti-
lization, the computational cost of filtering with IIR is similar to the cost of filtering
with finite impulse response (FIR) filters. FIR filtering enables real-time pro-
cessing. For this purpose, the so-called local quasi-interpolating and smoothing
splines, which are constructed by filtering data samples with FIR filters, can be
used, [17, 97, 98]. Their properties are close to the properties of global interpo-
lating and smoothing splines. These splines are presented in details in Volume II of
this book. However, a couple of examples of quasi-interpolating splines are given
in the current volume.

Spline subdivision and signals (images) upsampling: If spline values at grid
points are given, the computation of its values between the grid points is called a
spline subdivision. We describe SHA-based fast subdivision algorithms, which
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explicitly derive spline values at dyadic and triadic rational points from the
samples taken at integer grid points in one and two dimensions. The computer-
aided geometric design is a main field of application for subdivision schemes (for
example, see [27, 73]). However, these techniques suit well for signals and images
upsampling, to restore sparsely sampled signals and images at intermediate points.
These upsampling procedures increase the objects resolution. On the other hand,
when data are corrupted by noise, upsampling from a sparse grid can significantly
reduce the noise level.

Deconvolution: Deconvolution here means restoration of a signal or an image
from blurred sampled data that are typically corrupted by noise. This is an ill-
posed problem, which means that even small fluctuations in the input may lead to
output instability. Fourier analysis is a good tool in handling the convolution and
convolution-related problems, such as inverse of the heat equation and the Cauchy
problem for the Laplace equation, to name a few. This is because that Fourier
exponentials are the eigenfunctions of the convolution operator. The exponential
splines possess a similar property.

Many deconvolution algorithms are based on the Tikhonov regularization
scheme [83, 84], where the approximated solution of the deconvolution problem is
reduced to minimizing a parameterized functional. The regularization parameter
provides a tradeoff between the approximation of the available data and the reg-
ularity of the solution. Typically, data are discrete and corrupted by noise but the
physical meaning of the problem dictates the solution smoothness. In these setups,
splines are a good match. SHA provides a unified computational scheme for
finding a stable solution that possesses the required smoothness. The regularization
parameter is derived automatically from the evaluation of the relative contribu-
tions of the coherent signal and the noise in the data [18]. Note that construction of
a smoothing spline can be regarded as a special case of the regularization algo-
rithm when the data are discrete and noised and blurring is not present.

Design of spline wavelets and wavelet packets: Constructions of different
types of spline wavelets and wavelet packets in an explicit form and fast imple-
mentation of the corresponding transforms using FFT are described. The spline
wavelets construction stems from the two-scale relations between exponential
splines from different resolution scales, which are simple and the computation
complexity of which is practically independent of the splines order. The Fourier
spectra of spline wavelets from different resolution scales partitions the frequency
domain in a logarithmic way. Spline wavelet packets, which generalize wavelets,
are designed by using the same two-scale relations. The Fourier spectra of spline
wavelet packets from the j-th resolution scale split the frequency domain into 2j

bands of approximately equal width. The shapes of the magnitude spectra of the
spline wavelet packets tend to be rectangular as the splines order increases.
Therefore, the wavelet packet transform of a signal produces a number of the
signal representations, which are associated with different sets of frequency bands.
An optimal (up to a certain cost function) representation is achieved by the so-
called Best Basis algorithm [41, 74]. On the other hand, spline wavelet packets
provide a versatile collection of waveforms with different spans and different
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frequency contents. This collection can be used as a dictionary for the Matching
Pursuit framework [45, 59, 66].

Deconvolution revisited: When a signal/image is restored from blurred sampled
data affected by noise, it is worthwhile to keep in mind that relative contributions of
a coherent signal and noise are different in different frequency components of the
data. The deconvolution problem then can be solved separately in different
frequency bands, while regularization parameters are found according to the signal-
to-noise ratio in each band. This approach significantly extends the adaptation
abilities and the method robustness. Practically, this scheme is implemented via the
utilization of orthonormal spline wavelet packets. SHA provides a unified
computational scheme for their design, a fast implementation of the algorithm and
an explicit representation of the solutions. An optimal set of wavelet packets is
selected by the application of the Best Basis algorithm. Then, the equation is solved
separately for each wavelet packet transform coefficients block [24].

If an original signal to be restored from convolution with a bandlimited kernel
is highly inhomogeneous and the discrete output is strongly noised, a method,
which can be characterized as a Regularized Matching Pursuit (RMP) method,
produces good results. RMP is a greedy algorithm, which uses orthonormal spline
wavelet packet dictionaries. The main distinction from the conventional Matching
Pursuit is utilization of two different dictionaries. One dictionary, which consists
of discrete-time signals, is used to test discrete data. The second dictionary, which
consists of spline wavelet packets, approximates the continuous solution.

The regularization is achieved by replacing the orthogonal projections of the
data onto the dictionary elements, which are used in the conventional Matching
Pursuit, by oblique projections.

The above-listed regularized deconvolution methods turn into denoising
methods when the input data is not blurred.

Acoustic classification and target detection: The spline wavelet packet
transforms, which produce multiple splits of the frequency domain of a signal, can
be used to reveal frequency bands, which are characteristic either for the signal or
for a class of signals. Determining such bands is important when the processing
goal is to detect the presence or arrival of objects of a certain type or to classify
objects of different types via the analysis of their acoustic signatures. Typically,
signals emitted by mechanical objects have a quasi-periodic structure. Such
acoustic signals contain only a few dominating bands in the frequency domain,
whose general disposition remains stable with respect to varying conditions. The
combination of the inherent energies in these frequency bands can form an
acoustic signature of the object. An efficient way to determine the characteristic
bands is to apply an orthogonal spline wavelet packet transform to the signal and
calculate energies in the blocks of the transform coefficients [7, 25, 26]. This
approach is illustrated in the book on detection of the arrival of a vessel of a
certain type by analyzing hydro-acoustic signals recorded by a hydrophone.
However, the above approach is applicable to processing other types of quasi-
periodic signals such as biomedical signals [8].
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Discrete splines: The space of periodic discrete splines, which is a subspace of
the periodic signals space is described. Properties of the discrete splines mirror
properties of polynomial splines. The Zak transform applied to the discrete B-
splines produces exponential discrete splines, which serve as a source for the
construction of a discrete version of the SHA [68, 69]. The discrete SHA simplifies
manipulations with the discrete splines. In particular, it provides explicit expres-
sions for interpolating and smoothing discrete splines in one and two dimensions
and provides fast algorithms for calculation of the discrete splines values from grid
samples. This is a useful tool for upsampling signals and images.

Discrete splines wavelets and wavelet packets: Similarly to the polynomial
splines case, the wavelet and wavelet packet transforms are introduced to the
discrete splines space. These transforms are based on the relations between the
exponential discrete splines from different resolution scales. Practically, the trans-
forms of periodic signals are implemented by multirate filtering signals by two-
channel filter banks with the downsampling factor of 2 (critically sampled filter
banks). The filtering implementation is accelerated by switching to the polyphase
representation of signals and filters and using the FFT. The field of applications of
the discrete splines wavelet and wavelet packet transforms is, generally, the same as
the field of their polynomial counterparts. In particular, the discrete splines version
of the RMP is outlined.

Design of biorthogonal wavelets: The polynomial and discrete splines may
contribute to wavelet analysis in another way. They are a source for a family of
filters, which generate biorthogonal wavelets, whose properties are valuable for
signal processing. Although these wavelets originate from splines, they, unlike the
spline wavelets, do not belong to spline spaces. Design of biorthogonal wavelets
and efficient implementation of the transforms of signals is carried out through the
so-called Lifting scheme [82]. The idea is to split the signal into even and odd
subarrays. Then, the even subarray is filtered using some prediction filter in order
to predict the odd subarray. The predicted subarray is extracted from the original
odd subarray. The difference array is filtered by an update filter and it is used to
update the even subarray in order to eliminate aliasing. These operations are then
applied to the updated even subarray and so on. Thus, multiscale wavelet
decomposition is achieved. Reconstruction is implemented in the reverse order.
The key point is a proper choice of the prediction and update filters. Naturally, odd
samples can be predicted from midpoint values of either polynomial or discrete
splines, which interpolate or quasi-interpolate the even samples of the signal.
In this way, a number of linear phase IIR and FIR prediction filters are designed.
Being properly modified, they are used for the update step as well. By using these
filters, a diverse library of biorthogonal wavelets is constructed [9, 12]. Exclusive
properties are demonstrated by the so-called Butterworth wavelets, which originate
from discrete interpolatory splines. They are related to the Butterworth filters [64],
which are widely used in signal processing.

Data compression is an important application of the wavelet analysis. The
spline-based biorthogonal wavelets proved to be highly efficient in achieving
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highquality low-bitrate compression. This application is discussed in detail in
Volume II.

Wavelet frames (framelets): Recently frames or redundant expansions of
signals have attracted considerable interest from researchers working in signal
processing although one particular class of frames, the Gabor systems, has been
applied and investigated since 1946 [49]. As the requirement of one-to-one cor-
respondence between the signal and its transform coefficients is dropped, there is
more freedom to design and implement frame transforms.

Here we present some key features of framelet transforms and application to
image restoration.

Design and implementation: Wavelet transforms use critically sampled filter
banks. On the other hand, wavelet frame transforms are implemented by appli-
cation of oversampled perfect reconstruction (PR) pairs of filter banks. It means
that the number of channels in the filter banks exceeds the downsampling factor.
Moreover, translations of the filters, that constitute such filter banks, form wavelet
frames in the signal space [33, 42, 56]. Generally, the synthesis filter bank in the
PR pair differs from the analysis filter bank. In the case when both filter banks are
the same, the corresponding frame is tight. Tight frames can be regarded as
redundant counterparts of orthogonal bases. The design of a variety of three- and
four-channel PR filter banks, which generate tight frames in the space of periodic
signals, is described. The filter banks comprise one low-pass, one high-pass and
either one or two band-pass filters. All these filters are derived from the spline-
based prediction filters, which were used for the design of biorthogonal wavelet
transforms. In addition, the so-called semi-tight frames are introduced, where the
low- and high-pass filters in the synthesis filter bank are the same as in the analysis
filter bank, while the bandpass filters are different. Periodic setting, which enables
the utilization of a wide range of IIR filter banks with a relaxation of the tightness
requirement, provides a number of additional opportunities. Properties such as
symmetry, interpolation, flat spectra combined with fine time-domain localization
of framelets as well as a high number of vanishing moments can be easily
achieved. The transforms implementation is reduced to application of the direct
and the inverse FFT.

Image restoration: A valuable advantage that redundant representations hold is
their ability to restore missing and incomplete information, which is based on the
prior assumption that a frame expansion of a given signal/image is sparse. In
principle, only part of the samples/pixels is needed to (near) perfect object res-
toration. This approach, which is a variation of the Compressive Sensing meth-
odology (see, for example, [36]), has proved to be extremely efficient for image
restoration.

In practice, this approach is implemented via minimization of a parameterized
functional where the sparse representation is reflected in the l1 norm of the frame
transform coefficients. The �k k1 minimization does not have an explicit solution
and can be resolved only by iterative methods. The so-called split Bregman iter-
ation (SBI) scheme [50] provides a fast and stable algorithm for that. Variations of
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this scheme and its application to image restoration using wavelet frames are
described in [34, 35], to mention a few. A variety of impressive results on image
restoration have been reported in the last couple of years. A survey is given in [78]
while a recent development is described in [34].

Due to applications diversity, it is important to have a library of wavelet frames
in order to select a frame that fits best to a specific task. Forward and inverse
transforms in iterative algorithms are repeated many times: therefore, members in
this library must have fast and stable transforms implementation. Waveforms
symmetry with the availability of vanishing moments is also important in order to
avoid distortions when thresholding is used.

The designed family of the spline-based wavelet frames perfectly meet these
requirements. A number of experiments on image restoration, where performance
of different frames is compared with each other, is described. Their diversity
enabled a frame to be selected that best fits to each specific application. In par-
ticular, in most of the experiments semi-tight frames outperform tight frames.

The framelets construction is presented together with a fast computational
scheme in [19–21].

All the presented methods are accompanied by Matlab codes. A guide to the
software is given in Appendix.

The authors thank Steve Legrand for thorough proofreading and his comments,
which resulted in many corrections of the text.

Tel Aviv, Israel, November 2013 Amir Z. Averbuch
Valery A. Zheludev

Jyväskylä, Finland Pekka Neittaanmaki

References

1. P. Abry, A. Aldroubi, Designing multiresolution analysis-type wavelets and their fast
algorithms. J. Fourier Anal. Appl. 2(2), 135–159 (1995)

2. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications
(Academic Press, New York, 1987)

3. A. Aldroubi, M. Eden, M. Unser, Discrete spline filters for multiresolutions and wavelets of
l2. SIAM J. Math. Anal. 25(5), 1412–1432 (1994)

4. A. Aldroubi, M. Unser, Families of multiresolution and wavelet spaces with optimal
properties. Numer. Funct. Anal. Optim. 14(5–6), 417–446 (1993)

5. O. Amrani et al., Symmetric interpolatory framelets and their erasure recovery properties.
Int. J. Wavelets Multiresolut. Inf. Process. 5(4), 541–566 (2007)

6. M. Antonini et al., Image coding using wavelet transform. IEEE Trans. Image Process. 1(2),
205–220 (1992)

7. A. Averbuch et al., A wavelet packet algorithm for classification and detection of moving
vehicles. Multidimens. Syst. Signal Process. 12(1), 9–31 (2001)

8. A. Averbuch, I. Kozlov, V. Zheludev, Wavelet-packet-based algorithm for identification of
quasi-periodic signals, ed. by A.F. Laine, M.A. Unser, A. Aldroubi. Wavelets: Applications
in Signal and Image Processing IX, vol. 4478 of Proc. SPIE, 353–360 (2001)

Preface xiii



9. A. Averbuch, A.B. Pevnyi, V. Zheludev, Biorthogonal Butterworth wavelets derived from
discrete interpolatory splines. IEEE Trans. Signal Process. 49(11), 2682–2692 (2001)

10. A. Averbuch, A.B. Pevnyi, V. Zheludev, Butterworth wavelet transforms derived from
discrete interpolatory splines: recursive implementation. Signal Process. 81(11), 2363–2382
(2001)

11. A. Averbuch, V. Zheludev, Image compression using spline based wavelet transforms ed.
by A. Petrosian, F. Meyer, in Wavelets in Signal and Image Analysis: From Theory to
Practice, (Kluwer Academic Publishers, Dordrecht, 2001) p. 341–376

12. A. Averbuch, V. Zheludev, Construction of biorthogonal discrete wavelet transforms using
interpolatory splines. Appl. Comput. Harmon. Anal. 12(1), 25–56 (2002)

13. A. Averbuch, V. Zheludev, Lifting scheme for biorthogonal multiwavelets originated from
Hermite splines. IEEE Trans. Signal Process. 50(3), 487– 500 (2002)

14. A. Averbuch, V. Zheludev, Splines: a new contribution to wavelet analysis. ed. by
J. Levesley, I.J. Anderson, J.C. Mason, Algorithms for Approximation IV: in Proceedings
of the 2001 International Symposium, (University of Huddersfield, 2002) p. 314–321

15. A. Averbuch, V. Zheludev, A new family of spline-based biorthogonal wavelet transforms
and their application to image compression. IEEE Trans. Image Process. 13(7), 993–1007
(2004)

16. A. Averbuch, V. Zheludev, Wavelet and frame transforms originated from continuous and
discrete splines. ed. by J. Astola, L. Yaroslavsky, Advances in Signal Transforms: Theory
and Applications, (Hindawi Publishing Corporation, New York, 2007) p. 1–56

17. A. Averbuch, V. Zheludev, Wavelet transforms generated by splines. Int. J. Wavelets
Multiresolut. Inf. Process. 5(2), 257–291 (2007)

18. A. Averbuch, V. Zheludev, Spline-based deconvolution. Signal Process. 89(9), 1782–1797
(2009)

19. A. Averbuch, V. Zheludev, T. Cohen, Interpolatory frames in signal space. IEEE Trans.
Signal Process. 54(6), 2126–2139 (2006)

20. A. Averbuch, V. Zheludev, T. Cohen, Tight and sibling frames originated from discrete
splines. Signal Process. 86(7), 1632–1647 (2006)

21. A. Averbuch, V. Zheludev, T. Cohen, Multiwavelet frames in signal space originated from
Hermite splines. IEEE Trans. Signal Process. 55(3), 797–808 (2007)

22. A. Averbuch et al., Ternary interpolatory subdivision schemes originated from splines. Int.
J. Wavelets Multiresolut. Inf. Process. 9(4), 611–633 (2011)

23. A. Averbuch, V. Zheludev, M. Khazanovsky, Deconvolution by matching pursuit using
spline wavelet packets dictionaries. Appl. Comput. Harmon. Anal. 31(1), 98–124 (2011)

24. A. Averbuch et al., Block based deconvolution algorithm using spline wavelet packets.
J. Math. Imaging Vision. 38(3), 197–225 (2010)

25. A. Averbuch et al., Acoustic detection and classification of river boats. Appl. Acoustics
72(1), 22–34 (2011)

26. A. Averbuch et al., Wavelet-based acoustic detection of moving vehicles. Multidimens.
Syst. Signal Process. 20(1), 55–80 (2009)

27. R. Bartels, J. Beatty, B. Barsky, An Introduction to Splines for Use in Computer Graphics
and Geometric Modeling (Morgan Kaufmann Publishers, San Mateo, CA, 1987)

28. M.J. Bastiaans, Gabor’s Expansion and the Zak Transform for Continuoustime and
Discrete-Time Signals, ed. by Y.Y. Zeevi, R. Coifman, Signal and Image Representation in
Combined Spaces, number 7 in Wavelet Anal. Appl. (Academic Press, San Diego, CA,
1998) pp. 23–69

29. G. Battle, A block spin construction of ondelettes. I. lemarié functions. Comm. Math. Phys.
110(4), 601–615 (1987)

30. M.G. Ber, Natural discrete splines and the averaging problem. Vestnik Leningrad Univ.
Math. 23(4), 1–4 (1990)

xiv Preface



31. O. Bernard et al., Variational B-spline level-set method for fast image segmentation in 2008
5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
Proceedings, p. 177–180, IEEE, 2008

32. T. Blu et al., Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25(2),
31–40 (2008)

33. H. Bölcskei, F. Hlawatsch, H.G. Feichtinger, Frame-theoretic analysis of oversampled filter
banks. IEEE Trans. Signal Process. 46(12), 3256–3268 (1998)

34. J. Cai et al., Image restoration: total variation, wavelet frames, and beyond. J. Amer. Math.
Soc. 25(4), 1033–1089 (2012)

35. J. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration.
Multiscale Model. Simul. 8(2), 337–369 (2009/2010)

36. E. Candes et al., Stable signal recovery from incomplete and inaccurate measurements.
Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

37. C.K. Chui, W. He. Compactly supported tight frames associated with refinable functions.
Appl. Comput. Harmon. Anal. 8(3), 293–319 (2000)

38. C.K. Chui, W. He, J. Stöckler, Compactly supported tight and sibling frames with
maximum vanishing moments. Appl. Comput. Harmon. Anal. 13(3), 224–262 (2002)

39. C.K. Chui, J.-Z. Wang, On compactly supported spline wavelets and a duality principle.
Trans. Amer. Math. Soc. 330(2), 903–915 (1992)

40. A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported
wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)

41. R.R. Coifman, V.M. Wickerhauser, Entropy-based algorithms for best basis selection. IEEE
Trans. Inform. Theory 38(2), 713–718 (1992)
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