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Preface

Ordinary differential equations (ODEs) are the preferred language for the investi-
gation and understanding of various natural phenomena. Employed extensively in
natural sciences, engineering, and technology, ODEs are nowadays integrated in
any standard undergraduate science curriculum, while continuing to be the subject
of intensive research.

Although ODEs model a large number of natural phenomena, it is well known
that not many admit explicit solution. For this reason, the qualitative theory and
associated methods are often employed as an alternative investigative tool. When
successful, the qualitative approach leads to a broader picture of important open
subsets of solutions (sometimes the entire set), providing information about the
ODEs’ flow, parametric stability and bifurcations.

However, few families of ODEs allow a full treatment from the qualitative
theory standpoint. The family of systems of linear differential equations is one
of them. In the context of the qualitative theory, the importance of this family
is evident when much of the local analysis of nonlinear ODEs is reduced to the
study of their linear part. Nevertheless, this family exhibits limited richness from
a dynamical systems standpoint.

In this book we consider planar systems of piecewise linear differential equa-
tions (PWLS), to which we apply the full program of the qualitative theory. PWLS
may be considered as some of the most tractable nonlinear ODEs and they dis-
play a rich and interesting dynamical behaviour, comparable to that of general
nonlinear ODEs.

Beyond the academic-theoretical significance, the study of PWLS has prac-
tical relevance. The interest in these class of systems is driven by concrete appli-
cations in engineering, in particular in control theory and the design of electric
circuits.

This book is addressed to mathematicians, engineers, and scientists in gen-
eral, who are interested in the qualitative theory of ODEs, PWLS in particular. It
is also a reference book for anyone interested in the global phase portraits and the
bifurcation sets of all the symmetric three-piece linear differential systems (here
called fundamental systems), since their full characterization is presented here for
the first time.

xi



xii Preface

The book is divided into five chapters. Chapter 1 introduces fundamental
systems, describes their global phase portraits (including behaviour at infinity) and
the bifurcations occurring when parameters vary. To emphasize the importance of
fundamental systems in applications, we discuss two well-known examples: the
motor position control and the Wien bridge circuit. For the later and for specific
values of the parameters, we describe the evolution of the phase portrait.

In Chapter 2 we collect the basic results of the qualitative theory of planar
ODEs which are used in the rest of the book. To simplify the exposition of some
concepts we have confined ourselves to ODEs having a complete flow. For this
reason some of the results presented here are more restrictive than those that
normally appear in the literature. In Section 2.5 we treat planar linear differential
systems. We refer frequently to this section throughout the book. In Section 2.9
we formalize some aspects of the compactification of flows in order to apply this
technique to the fundamental systems. As known, the Poincaré compactification is
widely used in polynomial differential systems to study the behaviour of the flow
near the infinity. However, although some differential equations can be compacti-
fied satisfactorily, we have not found a systematization of its use outside the class
of polynomial differential systems.

Chapter 3 begins with the study of the fundamental systems. We show that
within this class the existence and uniqueness theorem and the theorem on contin-
uous dependence on initial conditions and parameters are valid. We further prove
that the behaviour of these systems is determined by a pair of matrices, called
fundamental matrices. This justifies that, except in very singular cases, we use
the trace and the determinant of the two matrices as fundamental parameters to
describe the dynamics of these systems. Additionally, we study the local phase
portrait at the singular points, both finite and infinite, and we give some results
about the existence and configuration of periodic orbits.

Poincaré maps of PWLS are determined by the linear differential systems
which act in each of the pieces. For fundamental systems, one of these linear
differential systems is homogeneous, while the other two are non-homogeneous.
Consequently, in Chapter 4 we study all the Poincaré maps of linear differential
systems associated to two cross sections. These cross sections are parameterized
in such a way that the Poincaré maps become invariant under linear transforma-
tions. We note that the parametrization introduced here has important implica-
tions. First, it allows the study of the Poincaré maps by choosing, in each case,
the simplest expression for the fundamental matrices. Usually we will assume that
the matrices are expressed in their real Jordan normal form. Second, we can char-
acterize the region in the parameter space where we can guarantee the existence
of the Poincaré maps. Thus the bifurcation set associated to the non-existence of
the Poincaré maps in the parameter space is an algebraic manifold homeomorphic
to the Whitney umbrella. Finally, this parametrization establishes a link between
Poincaré maps of PWLS and the class of differential systems which are called
observable in control theory.
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By collecting the results obtained in the previous chapters, in Chapter 5 we
are able to describe and classify all the phase portraits of fundamental systems.
The description of the phase portraits is carried out via the characterization of
all separatrices and canonical regions. This allows us to use in a rigorous way the
Marcus–Newmann–Peixoto Theorem on the topological classification of planar
flows and to describe explicitly the bifurcation manifolds. Each of the sections
of the chapter is devoted to fundamental systems having fixed the sign of two
fundamental parameters. All sections of this chapter are structured similarly. First,
we collect the results about singular points (both finite and infinite) and limit
cycles. Second, we locate the rest of the separatrices of the system and we describe
the behaviour of the canonical regions. Finally, we organize all the information in
propositions which describe and classify fundamental systems when we vary the
two parameters. At the end of each section we describe the bifurcations set and
provide a picture of the parameter space representing the bifurcation manifolds
and the corresponding phase portraits.

Readers interested only in such results can read the introductory Chapter
1 and then skip directly to Chapter 5, where they may find at the end of each
section a complete list of phase portraits and their bifurcations.

The book has been organized in such a way so that the full classification of
the global dynamics of the fundamental systems is obtained by using the qualita-
tive theory of ODEs. Since there are many cases that must be considered, some
propositions are very similar to each other and following all of them at the first
reading becomes a little tedious. It may be recommended that at first reading only
some of the proofs presented in Sections 3.11, 4.4 and 4.5 be followed in detail,
so that the main arguments are understood. For instance, in Chapter 5, it may
be useful to focus on one class of fundamental systems given by fixing the sign of
the two fundamental parameters, and then follow the rest of the results in more
detailed subsequent readings.

We thank Christina Stoica for her careful reading of the text of this book
and her improvements to our poor English.

Jaume Llibre
Antonio E. Teruel
Barcelona, 2013.


