

John Wearden

The Psychology of Time Perception

John Wearden

The Psychology of Time Perception

John Wearden School of Psychology Keele University Keele, UK

ISBN 978-1-137-40882-2 ISBN 978-1-137-40883-9 (eBook) DOI 10.1057/978-1-137-40883-9

Library of Congress Control Number: 2016938827

© The Editor(s) (if applicable) and The Author(s) 2016

The author(s) has/have asserted their right(s) to be identified as the author(s) of this work in accordance with the Copyright, Designs and Patents Act 1988.

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Cover illustration: © Edward Fielding / Alamy Stock Photo

Printed on acid-free paper

This Palgrave Macmillan imprint is published by Springer Nature The registered company is Macmillan Publishers Ltd. London

Preface

The composer Gustav Mahler is supposed to have said "A symphony must be like the world. It must contain everything." While this might be true of a Mahlerian symphony, it certainly is not true of this book on time perception. The volume you are reading does not contain everything that is known about time perception, or even everything that you might want to know. Its content is intended to provide the reader with an overview of some of the main trends in fairly recent work on the psychology of time, carried out over the last 30 or 40 years, although some historical issues are also discussed, as is a small amount of the philosophy of time. It is a personal selection of topics, albeit—I hope—a choice that is not too idiosyncratic. My aim is to provide the reader with an introduction to work in time perception which I believe to be interesting, important, and influential. An emphasis in the book, which reflects my own interests, is on ideas and theories underlying time perception research, rather than with just providing a summary of results, although a significant amount of experimental data is discussed, sometimes in considerable detail. The theories I mention have generally been simplified in the cause of exposition, and are all more complex than I am able to describe in this book, but the reader may consult the original articles cited in the text for details. I only hope the inventors of these theories agree that my discussion of their work has captured most of their essence, if not all the minutiae. Some topics that people might have wanted to read about, like

vi Preface

rhythmical timing or time in music, are not included, as they have tended to develop separately from what I consider to be mainstream time perception, which has been strongly focussed on the perception of duration, the judgement of how long things seem to last. I have also omitted any discussion of the cognitive neuroscience of time perception. Although this topic occupies the attention of many researchers at the time of writing, thus far their efforts have resulted in few firm conclusions that can be easily communicated. Indeed, none of the topics treated in the book would be significantly illuminated in any way by the neuroscience of timing in its present state, at least in my view. Finally, the reader is warned that my own contribution to the field has been exaggerated here, but if you are not interested in your own work, why should anyone else be? In any case, the considerable effort of writing this book, which among other things has brought home to me how little I know about the subject, has surely earned me this privilege.

Keele, UK John Wearden

Acknowledgements

I am grateful to the American Psychological Association, Elsevier B.V., and Taylor & Francis for permission to reproduce many of the figures used in this book.

Contents

1	Overview	1
2	A Brief History of Time Perception	5
	Philosophers and Time	5
	The Early Years of Time Perception Studies	11
	Chemical Clocks	15
	The Dawn of Internal Clock Models:	
	Creelman and Treisman	19
	Summary	24
3	SET and Human Timing	27
	Basic Principles	27
	Isolating the Pacemaker-Accumulator	
	Clock	38
	Isolating Temporal Memories	46
	Decision Processes	56
	Summary	59
	Simple Mathematics of Pacemaker-Accumulator	
	Clocks	59

x Contents

4	Theoretical Models of Temporal Generalization	
	and Bisection in Humans	65
	Temporal Generalization Models	66
	Temporal Generalization with Standards	
	(Wearden, 1992)	66
	Episodic Temporal Generalization	
	(Wearden, 2004)	70
	Bisection Models	71
	Wearden (1991b)	76
	Allan and Gibbon (1991)	77
	Wearden and Ferrara (1995)	78
	Kopec and Brody (2010)	80
	Summary	83
5	Cognitive Processes, Emotion, and Timing	85
	Attention and Timing	88
	Theoretical Explanations of Attentional Effects	95
	Predictive Studies	99
	Emotion	105
	Summary	115
6	Retrospective Timing and Passage of Time	
	Judgements	117
	Retrospective Timing	117
	Differences Between Prospective and Retrospective	
	Timing	127
	Passage of Time Judgements	131
	Passage of Time Judgements in the Laboratory	131
	Passage of Time Judgements in Everyday Life	134
	Summary	141
7	Time Perception in Children	143
	The Child's Conception of Time	144
	Neo-Piagetian Studies	149
	SET-Based Studies of Timing in Children	152
	Summary	166

		Contents	хi
8	Timing and Ageing		167
	Ageing and Performance on Standard Tasks		
	of Timing		168
	Time Experience in Older People		176
	Summary		181
9	Animal Timing		183
	Timing in Early Animal Research: Pavlov		
	and Skinner		184
	Properties of Animal Timing		191
	Explanations of Animal Timing According to SE	Γ	195
	Competitors of SET		201
	The Behavioural Theory of Timing		201
	Learning to Time		211
	Summary		219
	Appendix: Correlations Between Performance		
	Measures from the Peak Procedure		220
10	Methods Commonly Used in Time Perception		
	Research		223
	Temporal Reproduction		223
	Interval Production		226
	Verbal Estimation of Duration		227
	Discrimination Methods		228
	Bisection		229
	Temporal Generalization		231
Ref	erences		233
Aut	hor Index		253
Sub	Subject Index		

List of Figures

Fig. 2.1	Time taken to count to 60 at a rate judged to be	
	1 count per second, plotted against body temperature	
	in degrees Fahrenheit. Data from Mrs. Hoagland taken	
	from Hoagland (1935)	17
Fig. 2.2	Sketch of the internal clock model proposed	
C	by Treisman (1963). A pacemaker, the rate of which	
	is affected by the activation level of a specific arousal	
	centre, produces regular pulses which are counted in	
	a counter mechanism, and which can be stored in a	
	longer-term store. The contents of the counter and values	
	retrieved from the store can be compared in a comparator	
	mechanism, and the results of this comparison used to	
	generate a behavioural response	21
Fig. 3.1	Diagram of SET. The pacemaker is connected to the	
	accumulator via a switch. Accumulator contents are	
	transferred to a working memory store, and if the event	
	timed constitutes a "standard" duration, are then transferred	
	to the reference memory. To generate behaviour, the	
	contents of working memory are compared with a sample	
	taken from reference memory, and a decision process	
	operates on these two time representations to produce an	
	observed response	28

Fig. 2.1

xiv List of Figures

Fig. 3.2	Data from Wearden and McShane (1988). Four participants	
	repeatedly produced time intervals ranging from	
	0.5 to 1.3 s, and received feedback after their	
	responses. The data shown are the relative	
	frequencies of times produced plotted against	
	their duration, and are shown separately for the	
	different time requirements. The curves shown	
	are best-fitting Gaussian functions	30
Fig. 3.3	Data from Wearden and McShane (1988).	
O	Upper panel: Mean times produced plotted against	
	target time. The <i>line</i> shown is the best-fitting	
	regression line, and the numbers in the panel	
	indicate slope, intercept, and r2 values for the	
	regression. Lower panel: Standard deviations of times	
	produced plotted against their means. Once again,	
	the regression line and slope, intercept, and <i>r2</i> values	
	are given in the panel	31
Fig. 3.4	Temporal generalization gradients from Wearden,	
C	Denovan et al. (1997). The standard durations were	
	2, 4, 6, and 8 s, and the data shown are the proportion	
	of YES responses (judgements that a comparison	
	duration was of the same duration as the standard),	
	plotted against comparison stimulus duration	32
Fig. 3.5	Superimposition data from Wearden, Denovan	
C	et al. (1997). Temporal generalization gradients	
	from the conditions shown in Fig. 3.4 plus some	
	others are plotted on a relative scale. For this, the	
	duration of each comparison stimulus was divided	
	by the standard in force for that condition	32
Fig. 3.6	Data from Wearden and Jones (2007). The task was to	
C	estimate the elapsed percentage of a standard	
	(in different cases 10 s or 9.5 s) when comparison	
	values varied from 10 to 100 % of the standard.	
	The lines shown are best-fitting regression lines.	
	See text for other details	40
Fig. 3.7	Data from Penton-Voak et al. (1996). Upper panel:	
C	Verbal estimates of the duration of auditory stimuli	
	(500 Hz tones) preceded by no clicks (0 s) or 5 s of	